Main Article Content
Abstract
This study aims to classify two types of Sumba horses, namely the Sandelwood horse and the Peranakan Luar horse, using the Convolutional Neural Network (CNN) method. The classification process was carried out by implementing two CNN architectures, namely MobileNetV2 and ResNet50, which were tested to compare their performance. The dataset used consisted of 600 images, which went through preprocessing stages including cropping, normalization, and augmentation to improve data quality and model generalization capabilities. The test results showed that MobileNetV2 provided the best performance with 94% accuracy, 100% precision for the Peranakan class, and 100% recall for the Sandelwood class. In contrast, ResNet50 only achieved 65% accuracy, with low training stability. Analysis of accuracy and loss graphs indicated overfitting in MobileNetV2 due to limited data amount. Based on these findings, MobileNetV2 is recommended as a more efficient architecture for limited datasets. For further development, the use of additional data augmentation techniques, regularization, and early stopping is recommended to improve the model's generalization capabilities.
Keywords: CNN, MobileNetV2, ResNet50, Image Classification, Sumba Horse
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- [1] A. J. S. Sipul, M. U. E. Sanam, and B. J. Widyananta, “Studi keragaman warna dan morfometrik kuda sandelwood di Kabupaten Sumba Tengah,” J. Vet. Nusant., vol. 3, no. 2, pp. 97–104, 2020.
- [2] W. Bismi, D. Novianti, and M. Qomaruddin, “Analisis Perbandingan Klasifikasi Citra Genus Panthera dengan Pendekatan Deep learning Model MobileNet,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 1–9, 2024.
- [3] H. A. Atabay, “Pembelajaran Mendalam untuk Pengenalan Jenis Kuda,” 2018.
- [4] R. Gunawan, D. M. I. Hanafie, and A. Elanda, “Klasifikasi Jenis Ras Kucing Dengan Gambar Menggunakan Convolutional Neural Network (CNN),” J. Interkom J. Publ. Ilm. Bid. Teknol. Inf. dan Komun., vol. 18, no. 4, pp. 1–8, 2024, doi: 10.35969/interkom.v18i4.318.
- [5] F. Rizal, F. Hasyim, K. Malik, and Y. Yudistira, “Implementasi Algoritma Convolutional Neural Networks (CNN) Untuk Klasifikasi Batik,” COREAI J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 2, no. 2, pp. 40–47, 2022, doi: 10.33650/coreai.v2i2.3365.
- [6] Rexion Alondeo Boimau and Yampi R. Kaesmetan, “Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” Repeater Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 26–34, 2024, doi: 10.62951/repeater.v2i3.81.
- [7] I. Suhardin, A. Patombongi, and A. M. Islah, “MENGIDENTIFIKASI JENIS TANAMAN BERDASARKAN CITRA DAUN MENGGUNAKAN AlGORITMA CONVOLUTIONAL NEURAL NETWORK,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 6, no. 2, pp. 100–108, 2021, doi: 10.51876/simtek.v6i2.101.
- [8] I. A. DLY, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
- [9] R. Firdaus, Joni Satria, and B. Baidarus, “Klasifikasi Jenis Kelamin Berdasarkan Gambar Mata Menggunakan Algoritma Convolutional Neural Network (CNN),” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 267–273, 2022, doi: 10.37859/coscitech.v3i3.4360.
- [10] A. M. Jawa and A. Iriani, “Basis Pengetahuan Nilai-nilai Kain Tenun Sumba dengan Model Seci dan Convolutional Neural Network,” Aiti, vol. 20, no. 1, pp. 1–15, 2023, doi: 10.24246/aiti.v20i1.1-15.
- [11] Y. Pratama, U. Lestari, and A. Hamzah, “Pemanfaatan Aplikasi Teachable Machine Untuk Pengenalan Binatang Menggunakan Konsep Convolutional Neural Network (CNN),” J. Scr., vol. 10, no. 1, pp. 10–20, 2022, [Online]. Available: https://ejournal.akprind.ac.id/index.php/script/article/view/4067%0Ahttps://ejournal.akprind.ac.id/index.php/script/article/download/4067/2885
- [12] Verdy and Ery Hartati, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Model Resnet-50,” J. Rekayasa Sist. Inf. dan Teknol., vol. 1, no. 3, pp. 199–206, 2024, doi: 10.59407/jrsit.v1i3.529.
- [13] J. T. Samudra, R. Rosnelly, Z. Situmorang, and P. S. Ramadhan, “Model Klasifikasi Jenis Hewan Dengan SVM, KNN, Logistic Regression Menggunakan Pre-Trained VGG 16,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 22, no. 2, p. 225, 2023, doi: 10.53513/jis.v22i2.8314.