Main Article Content

Abstract

The World Health Organization on March 11, 2020, declared Coronavirus Disease 2019 (Covid-19) a pandemic. Covid-19 is a disease caused by a new type of coronavirus, namely Sars-CoV-2, which affects the respiratory system. Until now, positive confirmed cases of Covid-19 in Indonesia are still occurring every day. This study aims to predict the addition of Covid-19 cases in Indonesia. The data is sourced from the public API page covid19.go.id in the form of an additional number of Covid-19 cases in Indonesia by 122 lines of data. Predictions are made using linear regression and polynomial regression methods as comparisons. Evaluation of the linear regression method obtains a value of R2 = 0.57, while the polynomial regression method obtains a value of R2 = 0.84. Based on these evaluations, the polynomial regression method yields better results than the linear regression method. The prediction of Covid-19 cases in Indonesia from January to March 2022 using the polynomial regression methods predicts that the addition of Covid-19 cases will rise again.

Keywords

Covid-19, Prediction, Linear Regression, Regression Polynomial

Article Details

How to Cite
Rakhman, A. ., Cahyana, Y., Rahmat, Tukino, & Wahyu Iriananda, S. . (2023). Prediction Model for Covid-19 Cases in Indonesia Using Linear Regression and Polynomial Regression Methods. Edutran Computer Science and Information Technology, 1(1), 1-8. https://doi.org/10.59805/ecsit.v1i1.4

References

  1. [1] S. Saidi, S. Saidi, N. Herawati, and K. Nisa, “Modeling with generalized linear model on covid-19: Cases in Indonesia,” Int. J. Electron. Commun. Syst., vol. 1, no. 1, pp. 25–32, 2021.
  2. [2] U. Mukhaiyar, D. Widyanti, and S. Vantika, “The time series regression analysis in evaluating the economic impact of COVID-19 cases in Indonesia,” Model Assist. Stat. Appl., vol. 16, no. 3, pp. 197–210, Aug. 2021, doi: 10.3233/MAS-210533.
  3. [3] M. Dong, C. Tang, J. Ji, Q. Lin, and K. C. Wong, “Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression,” Appl. Soft Comput., vol. 111, p. 107683, 2021, doi: 10.1016/j.asoc.2021.107683.
  4. [4] K. K.M.U.B, “Forecasting COVID -19 Outbreak in the Philippines and Indonesia,” J. New Front. Healthc. Biol. Sci., vol. 2, no. 1, pp. 1–19, 2021, [Online]. Available: https://imathm.edu.lk/files/documents/file_name/fb67096c-3453-4247-b427-cbdff75a266e/JNFHBS _2_1_ 2021_1-19.pdf
  5. [5] A. Y. Paulindino, E. Selvano, P. K. Maryanto, and W. Budiharto, “Covid-19 Forecasting in Indonesia Using Prophet Model,” ICIC Express Lett. Part B Appl., vol. 13, no. 2, pp. 211–218, 2022, doi: 10.24507/icicelb.13.02.211.
  6. [6] A. Lia Hananto, B. Priyatna, A. Fauzi, A. Yuniar Rahman, Y. Pangestika, and Tukino, “Analysis of the Best Employee Selection Decision Support System Using Analytical Hierarchy Process (AHP),” J. Phys. Conf. Ser., vol. 1908, no. 1, 2021, doi: 10.1088/1742-6596/1908/1/012023.
  7. [7] S. S. Hananto, A. L., Assiroj, P., Priyatna, B., Fauzi, A., Rahman, A. Y., & Hilabi, “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm. In Journal of Physics: Conference Series,” IOP Publ., vol. 1908, no. 1, 2021.
  8. [8] S. T. A. Shah, A. Iftikhar, M. I. Khan, M. Mansoor, A. F. Mirza, and M. Bilal, “PREDICTING COVID-19 INFECTIONS PREVALENCE USING LINEAR REGRESSION TOOL,” J. Exp. Biol. Agric. Sci., vol. 8, p. 2020, 2020, [Online]. Available: http://www.horizonpublisherindia.in/]
  9. [9] S. Shaikh, J. Gala, A. Jain, S. Advani, S. Jaidhara, and M. R. Edinburgh, “Analysis and Prediction of COVID-19 using Regression Models and Time Series Forecasting,” Proc. Conflu. 2021 11th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 989–995, 2021, doi: 10.1109/Confluence51648.2021.9377137.
  10. [10] E. Gambhir, R. Jain, A. Gupta, and U. Tomer, “Regression Analysis of COVID-19 using Machine Learning Algorithms,” in 2020 International Conference on Smart Electronics and Communication (ICOSEC), Sep. 2020, pp. 65–71. doi: 10.1109/ICOSEC49089.2020.9215356.
  11. [11] M. R. Balf, R. Noori, R. Berndtsson, A. Ghaemi, and B. Ghiasi, “Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers,” J. Water Supply Res. Technol. - Aqua, p. jws2018021, Jun. 2018, doi: 10.2166/aqua.2018.021.
  12. [12] R. Rory and R. Diana, “Modeling of COVID-19 data using local polynomial regression,” Semin. Nas. Off. Stat. 2020, vol. 2, pp. 91–98, 2020.
  13. [13] H. Imran, N. M. Al-Abdaly, M. H. Shamsa, A. Shatnawi, M. Ibrahim, and K. A. Ostrowski, “Development of Prediction Model to Predict the CompressiveStrength of Eco-Friendly Concrete Using MultivariatePolynomial Regression Combined with Stepwise Method,” Materials (Basel)., vol. 15, no. 1, 2022, doi: 10.3390/ma15010317.
  14. [14] Yayan Sat, “Do Human Restriction Mobility Policy in Indonesia effectively reduce the Spread of Covid-19,” no. July, 2020.
  15. [15] N. Rollborn et al., “Accuracy of determination of free light chains (Kappa and Lambda) in plasma and serum by Swedish laboratories as monitored by external quality assessment,” Clin. Biochem., vol. 111, pp. 47–53, Jan. 2023, doi: 10.1016/j.clinbiochem.2022.10.003.
  16. [16] H. Zhang et al., “Revealing the influence of oxygen-containing functional groups on mercury adsorption via density functional theory and multiple linear regression analysis,” Fuel, vol. 335, p. 127040, Mar. 2023, doi: 10.1016/j.fuel.2022.127040.
  17. [17] B. Hakim and A. Fauzi, “Indonesian Covid-19 Prevention Policies Analysis Using Cumulative Cases Data Regression,” OISAA J. Indones. Emas, vol. 4, no. 1, pp. 28–33, 2021, doi: 10.52162/jie.2021.004.01.4.
  18. [18] A. Parnianifard and M. A. I. Muhammadimranglasgowacuk, “Expedited Surrogate-Based Quanti cation of Engineering Tolerances using A Modi ed Polynomial Regression”.
  19. [19] A. Hernandez-Matamoros, H. Fujita, T. Hayashi, and H. Perez-Meana, “Forecasting of COVID19 per regions using ARIMA models and polynomial functions,” Appl. Soft Comput. J., vol. 96, p. 106610, 2020, doi: 10.1016/j.asoc.2020.106610.
  20. [20] E. Matthew and O. Adeyinka, “Application of Hierarchical Polynomial Regression Models to Predict Transmission of COVID-19 at Global Level,” Int. J. Clin. Biostat. Biometrics, vol. 6, no. 1, 2020, doi: 10.23937/2469-5831/1510027.