Main Article Content

Abstract

Tempe is one of the ingredients of traditional Indonesian cuisine. In making tempe, a soybean fermentation process is needed which is generally still carried out in an open environment so that the maturity time becomes slow and erratic. Therefore, in the tempe fermentation process, a detector is needed to find out optimal maturity in tempe. This detection effort makes it possible to use image processing by utilizing various feature extractions through the classification process. This research utilizes a variety of image features, namely texture features using the GLCM method and various color features, namely RGB, HSV, LAB, CMYK, YUV, HIS, HCL, LCH. However, with so many features, it causes a high computational load, so that in this study the Information Gain approach was used to select features. Furthermore, the classification process is carried out using the Support Vector Machine (SVM) method with variations of linear, polynomial, gaussian and sigmoid kernels. Tempe objects in the fermentation process are divided into unripe, ripe and rotten classes with a total of 410 images as a dataset. The test results (SVM+IG) on the Sigmoid kernel produce the fastest time accuracy with a computational result of 2.18 seconds on a 30:70 split ratio, the longest split ratio is 80:20 which is 2.50 seconds on a Linear kernel and produces the highest accuracy of 96 ,74%. Furthermore, in the SVM test without using Information Gain on the gaussian kernel, it produced the fastest time accuracy of 2.28 seconds, and the longest at a split ratio of 40:60, namely 3.00 seconds in the polynomial kernel. Thus the result of using SVM+IG is that the average level of accuracy when using (SVM+IG) is faster than the SVM process without IG which obtains slower computation time. Based on the description above, this study aims to apply the SVM method to classify tempe fermented images with feature selection using Information Gain.

Keywords

Support Vector Machine Information Gain GLCM MATLAB

Article Details

How to Cite
Irfak, M. ., Istiadi, & Rahman, A. Y. (2023). Support Vector Machine Application for Classification of Tempe Fermentation Maturity with Information Gain Selection Feature. Edutran Computer Science and Information Technology, 1(2), 1-9. https://doi.org/10.59805/ecsit.v1i2.40

References

  1. [1] R. S. Putri, M. I. Fanani, I. I. Kurniawan, E. P. O. Danawan, K. I. F. Sugiarto, and Istiadi, “Penerapan Teknologi Pengendali Fermentasi Tempe Bagi Usaha Krudel Lariso Kelurahan Purwantoro Kota Malang,” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2018), vol. 9, no. September, pp. 353–361, 2018.
  2. [2] - Istiadi et al., “Classification of Tempeh Maturity Using Decision Tree and Three Texture Features,” JOIV Int. J. Informatics Vis., vol. 6, no. 4, p. 883, Dec. 2022, doi: 10.30630/joiv.6.4.983.
  3. [3] N. Astrianda, “Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine,” VOCATECH Vocat. Educ. Technol. J., vol. 1, no. 2, pp. 45–52, 2020, doi: 10.38038/vocatech.v1i2.27.
  4. [4] A. Prayoga, H. A. Tawakal, and R. Aldiansyah, “Pengembangan Metode Deteksi Tingkat Kematangan Buah Melon Berdasarkan Tekstur Kulit Buah Dengan Menggunakan Metode Ekstraksi Ciri Statistik Dan Support Vector Machine (Svm),” Depok Sk. Tinggi Teknol. Terpadu Nurul Fikri, vol. 4, no. 1, pp. 24–30, 2018.
  5. [5] M. Arief, “Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Warna Menggunakan Metode SVM,” J. Ilmu Komput. dan Desain Komun. Vis., vol. 4, no. 1, pp. 9–16, 2019.
  6. [6] A. Kulsumarwati, I. Purnamasari, and B. A. Darmawan, “Penerapan SVM dan Information Gain Pada Analisis Sentimen Pelaksanaan Pilkada Saat Pandemi,” J. Teknol. Inform. dan Komput., vol. 7, no. 2, pp. 101–109, 2021, doi: 10.37012/jtik.v7i2.641.
  7. [7] Khalid, R. B. Setya, and A. A. Zainal, “Seleksi Fitur Dua Tahap Menggunakan Information Gain dan Artificial Bee Colony untuk Kategorisasi Teks Berbasis Support Vector Machine,” pp. 9–25, 2019.
  8. [8] R. A. Azizah, F. Bachtiar, and S. Adinugroho, “Klasifikasi Kinerja Akademik Siswa Menggunakan Neighbor Weighted K-Nearest Neighbor dengan Seleksi Fitur Information Gain,” J. Teknol. Inf. dan …, vol. 9, no. 3, 2022, doi: 10.25126/jtiik.202295751.
  9. [9] I. Maulida, A. Suyatno, and H. R. Hatta, “Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain,” vol. 17, no. 2, pp. 249–258, 2016.
  10. [10] R. Widodo, A. W. Widodo, and A. Supriyanto, “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix ( GLCM ) Citra Buah Jeruk Keprok ( Citrus reticulata Blanco ) untuk Klasifikasi Mutu,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 5769–5776, 2018.
  11. [11] Y. Tian et al., “The coloring mechanism of a novel golden variety in Populus deltoides based on the RGB color mode,” For. Res., vol. 1, no. 1, pp. 1–13, 2021, doi: 10.48130/fr-2021-0005.
  12. [12] H. Kim, “Brok en stitc h detection system for industrial sewing machines using HSV color space and image processing techniques,” no. July, pp. 1602–1614, 2023, doi: 10.1093/jcde/qwad069.
  13. [13] F. Kulapichitr, C. Borompichaichartkul, M. Fang, I. Suppavorasatit, and K. R. Cadwallader, “Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans,” Food Chem., vol. 366, 2022, doi: 10.1016/j.foodchem.2021.130504.
  14. [14] D. T. Joy, G. Kaur, A. Chugh, and S. B. Bajaj, “Computer Vision for Color Detection,” Int. J. Innov. Res. Comput. Sci. Technol., vol. 9, no. 3, pp. 53–59, 2021, doi: 10.21276/ijircst.2021.9.3.9.
  15. [15] M. Yoga Wibowo, H. Hikmayanti, A. Fitri Nur Masruriyah, E. Novalia, and N. Heryana, “Mask Use Detection in Public Places Using the Convolutional Neural Network Algorithm,” Edutran Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 19–25, Mar. 2023, doi: 10.59805/ecsit.v1i1.10.
  16. [16] Q. Wang, W. Chen, X. Wu, and Z. Li, “Detail-Enhanced Multi-Scale Exposure Fusion in YUV Color Space,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 8, pp. 2418–2429, 2020, doi: 10.1109/TCSVT.2019.2919310.
  17. [17] H. Edha, S. H. Sitorus, U. Ristian, J. Rakayasa, and S. Komputer, “PENERAPAN METODE TRANSFORMASI RUANG WARNA HUE SATURATION INTENSITY ( HSI ) UNTUK MENDETEKSI,” vol. 08, no. 1, 2020.
  18. [18] B. Sugandi and S. Dewi, “Sistem Inspeksi Kecacatan pada Kaleng Menggunakan Filter Warna HSL dan Template Matching,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 2, p. 124, 2018, doi: 10.23917/khif.v4i2.7119.
  19. [19] V. Honson, Q. Huynh-Thu, M. Arnison, D. Monaghan, Z. J. Isherwood, and J. Kim, “Effects of Shape, Roughness and Gloss on the Perceived Reflectance of Colored Surfaces,” Front. Psychol., vol. 11, no. March, pp. 1–17, 2020, doi: 10.3389/fpsyg.2020.00485.
  20. [20] S. Jadhav, H. He, and K. Jenkins, “Information gain directed genetic algorithm wrapper feature selection for credit rating,” Appl. Soft Comput. J., vol. 69, no. August, pp. 541–553, 2018, doi: 10.1016/j.asoc.2018.04.033.
  21. [21] R. Munawarah, O. Soesanto, and M. R. Faisal, “Penerapan Metode Support Vector Machine,” Kumpul. J. Ilmu Komput., vol. 04, no. 01, pp. 103–113, 2016.
  22. [22] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” pp. 37–63, 2020.
  23. [23] A. Lia Hananto et al., “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1908, no. 1, 2021, doi: 10.1088/1742-6596/1908/1/012024.
  24. [24] D. J. Armaghani, P. G. Asteris, B. Askarian, M. Hasanipanah, R. Tarinejad, and V. Van Huynh, “Examining hybrid and single SVM models with different kernels to predict rock brittleness,” Sustain., vol. 12, no. 6, pp. 1–17, 2020, doi: 10.3390/su12062229.