Main Article Content

Abstract

This study discusses how an algorithm can produce predictions used as a reference for implementing work efficiency using the Linear Regression Algorithm. Linear Regression Algorithm is an algorithm that allows to calculate the linear relationship between the dependent and independent variables to make predictions. In his observations, the researcher used one sample which is data on the arrival of goods in the Production Control department of PT XYZ Indonesia with a total IN part of 9055551, part OUT of 332037. The results of predictions made using the Linear Regression Algorithm in (February-May) in 2022 are 4981165 and on the results of testing the prediction results using the MAPE (Mean Absolute Percentage Error) method produces an error of 6% where 6% is still in category A <10% which is very accurate. The results of this prediction produce Man Power, Space and Shuttle efficiency with a reduction of 1 Man Power, 500m2 space and 5 shuttles with a total profit of Rp. 1,897,670,000 per year and can meet the demand for new suppliers to fill the warehouse area. Researchers can conclude that researchers can find out the stages, processes, and results in applying the Linear Regression Algorithm by an average of 90% from previous studies which can predict the arrival of goods and produce work efficiency.

Keywords

Logistics engineers Linear regression Logistics systems

Article Details

How to Cite
Yusuf Rizqi Affandi, B., Cahyana, Y., Sulistya Kusumaningrum, D. ., Lia Hananto, A., & Marisa, F. (2023). Work Process Efficiency With Goods Arrival Predictions Against Production Plans Using Linear Regression Algorithms. Edutran Computer Science and Information Technology, 1(1), 9-18. https://doi.org/10.59805/ecsit.v1i1.5

References

  1. [1] A. Raihan, A. S. Kanza, A. U. Rohmah, and D. Z. Khairani, “Analysis and Recommendations for Business Process Improvement for Retail Companies Using the Business Process Improvement ( BPI ) Method,” vol. 1, no. 1, pp. 1–6, 2023.
  2. [2] S. Q. A. Al-Rahman, E. H. Hasan, and A. M. Sagheer, “Design and implementation of the web (extract, transform, load) process in data warehouse application,” IAES Int. J. Artif. Intell., vol. 12, no. 2, pp. 765–775, 2023, doi: 10.11591/ijai.v12.i2.pp765-775.
  3. [3] R. L. Gai and H. Zhang, “Prediction model of agricultural water quality based on optimized logistic regression algorithm,” EURASIP J. Adv. Signal Process., vol. 2023, no. 1, 2023, doi: 10.1186/s13634-023-00973-9.
  4. [4] Y. Tian, M. Tian, and Q. Zhu, “Linear Quantile Regression Based on EM Algorithm,” Commun. Stat. - Theory Methods, vol. 43, no. 16, pp. 3464–3484, Aug. 2014, doi: 10.1080/03610926.2013.766339.
  5. [5] S. Rong and Z. Bao-wen, “The research of regression model in machine learning field,” MATEC Web Conf., vol. 176, p. 01033, Jul. 2018, doi: 10.1051/matecconf/201817601033.
  6. [6] M. Ali, R. Prasad, Y. Xiang, and R. C. Deo, “Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms,” Renew. Sustain. Energy Rev., vol. 132, p. 110003, Oct. 2020, doi: 10.1016/j.rser.2020.110003.
  7. [7] J. Chen et al., “A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide,” Environ. Int., vol. 130, p. 104934, Sep. 2019, doi: 10.1016/j.envint.2019.104934.
  8. [8] C.-S. M. Wu, P. Patil, and S. Gunaseelan, “Comparison of Different Machine Learning Algorithms for Multiple Regression on Black Friday Sales Data,” in 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Nov. 2018, pp. 16–20. doi: 10.1109/ICSESS.2018.8663760.
  9. [9] F. F. Kamu, J. D. D Massie, and F. J. Tumewu, “Analyze The Effect Of Visual Merchandising And Brand Image On Customer Purchase Intention Case Study: Starbucks Customer In Manado City,” J. EMBA, vol. 11, no. 1, pp. 108–116, 2023.
  10. [10] P. Noi, J. Degener, and M. Kappas, “Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data,” Remote Sens., vol. 9, no. 5, p. 398, Apr. 2017, doi: 10.3390/rs9050398.
  11. [11] P. V. Mahesh, S. Meyyappan, and R. K. R. Alla, “A New Multivariate Linear Regression MPPT Algorithm for Solar PV System with Boost Converter,” ECTI Trans. Electr. Eng. Electron. Commun., vol. 20, no. 2, pp. 269–281, Jun. 2022, doi: 10.37936/ecti-eec.2022202.246909.
  12. [12] F. Lauer, “Estimating the probability of success of a simple algorithm for switched linear regression,” Nonlinear Anal. Hybrid Syst., vol. 8, pp. 31–47, May 2013, doi: 10.1016/j.nahs.2012.10.001.
  13. [13] S.-C. Yip, K. Wong, W.-P. Hew, M.-T. Gan, R. C.-W. Phan, and S.-W. Tan, “Detection of energy theft and defective smart meters in smart grids using linear regression,” Int. J. Electr. Power Energy Syst., vol. 91, pp. 230–240, Oct. 2017, doi: 10.1016/j.ijepes.2017.04.005.
  14. [14] A. M. Siregar, “APLIKASI LINIER REGRESI DENGAN ALGORITMA JARINGAN SYARAF TIRUAN UNTUK SENTIMEN ANALISIS,” vol. 15, no. 2, pp. 1–23, 2018.
  15. [15] I. Diakonikolas, W. Kong, and A. Stewart, “Efficient algorithms and lower bounds for robust linear regression,” Proc. Annu. ACM-SIAM Symp. Discret. Algorithms, pp. 2745–2754, 2019, doi: 10.1137/1.9781611975482.170.
  16. [16] S. M. N. Rahaju, A. L. Hananto, P. A. Paristiawan, A. T. Mohammed, A. C. Opia, and M. Idris, “Comparison of Various Prediction Model for Biodiesel Cetane Number using Cascade-Forward Neural Network,” Automot. Exp., vol. 6, no. 1, pp. 4–13, Jan. 2023, doi: 10.31603/ae.7050.
  17. [17] A. Montesinos-López, O. A. Montesinos-López, J. C. Montesinos-López, C. A. Flores-Cortes, R. de la Rosa, and J. Crossa, “A guide for kernel generalized regression methods for genomic-enabled prediction,” Heredity (Edinb)., vol. 126, no. 4, pp. 577–596, 2021, doi: 10.1038/s41437-021-00412-1.
  18. [18] F. Gregoretti, V. Belcastro, D. di Bernardo, and G. Oliva, “A Parallel Implementation of the Network Identification by Multiple Regression (NIR) Algorithm to Reverse-Engineer Regulatory Gene Networks,” PLoS One, vol. 5, no. 4, p. e10179, Apr. 2010, doi: 10.1371/journal.pone.0010179.
  19. [19] K. Srinivas, G. Madhukar Rao, K. Vengatesan, P. Shivkumar Tanesh, A. Kumar, and S. Yuvaraj, “AN IMPLEMENTATION OF SUBSIDY PREDICTION SYSTEM USING MACHINE LEARNING LOGISTICAL REGRESSION ALGORITHM,” Adv. Math. Sci. J., vol. 9, no. 6, pp. 3409–3417, Jul. 2020, doi: 10.37418/amsj.9.6.21.
  20. [20] T. Wahyudi and D. S. Arroufu, “Implementation of Data Mining Prediction Delivery Time Using Linear Regression Algorithm,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 84–92, 2022, [Online]. Available: https://journal.yrpipku.com/index.php/jaets/article/view/918